But technology has come a long way in the last couple of decades. What used to be only available to scientists and professional astronomers is now accessible to everyone! The best planetary cameras are capable of producing crystal-clear images of the cosmos. These devices are fine-tuned to work with the unique challenges of astrophotography. More powerful and capable than your average digital camera, these units can capture some stunning images worth showing off.
Whether you’re new to astrophotography or a seasoned hobbyist looking for an upgrade, choosing the right equipment is paramount. These cameras are a big investment. While there are plenty of options on the market, not every unit is going to provide you with the results you’re after. Check out some of our favorite cameras for capturing planetary images.
Best Planetary Cameras Reviewed
ZWO ASI224MC 1.2 MP CMOS Color Astronomy Camera
This ZWO camera is a compact little device that you can slip directly onto your telescope. Despite its small size, the camera is packing a lot of great technology. The 1.2-megapixel sensor is capable of capturing crystal-clear images of nearby planets.
Not only that, but it has great live-stream functions. You can use the USB3 port to connect it to a computer. Stream the image instantly and use the included software to capture individual images as you go!
Key Features:
- Sensor measures a third of an inch
- 1.2 megapixels
- Color camera
- 64 FPS at full resolution
- USB3 and Wi-Fi connectivity
AVAILABLE ON AMAZON
Orion StarShoot USB Eyepiece Camera II

Want to photograph the night sky without breaking the bank? Check out this planetary imager from Orion. It’s an easy-to-use device that you can plug into your computer. The sensor fits onto most 1.25-inch focusers. It takes the place of standard eyepieces, so you can use it on most telescopes or Barlow lenses without any issues.
The camera has full RGB color and high frame rate video capabilities. When connected to a computer, you can utilize the included software to view the live feed and capture images as you please.
Key Features:
- 5.6-micron pixels
- USB connectivity
- Fits onto a standard focuser
- Full RGB Color
AVAILABLE ON AMAZON
Celestron 93709 NexImage Solar System Imager (Black/Silver)

Want to capture breathtaking images of the cosmos? The NexImage Solar System Imager from Celestron can help you do just that. This small device operates in a similar way to a traditional camera. However, it’s purpose-built to fit onto telescopes. There’s no need to invest in extra mounting gear or astrophotography accessories.
The imager is compact and utilizes a standard 1.25-inch barrel. As a result, it takes the place of your standard eyepiece. Connect the integrated USB cable to a computer, fire up the software, and start snapping!
Inside the imager is an active-pixel CMOS sensor. It’s the same kind of sensor you’d see in premium cameras. It picks up fine details to create a clear image you can enjoy later. There’s also an integrated IR filter. It helps to reduce color issues, making the final image true-to-life.
The Celestron imager is a worthy investment for any astrophotography enthusiast. It takes the place of bulky cameras and can take the guesswork out of capturing breathtaking images.
Key Features:
- CMOS image sensor
- Maximum resolution of 1280×720 pixels
- Integrated IR filter
- USB connectivity
- 1.25-inch barrel
- Includes easy-to-use computer software
AVAILABLE ON AMAZON
SVBONY SV105 CMOS Telescope Camera

Check out this entry-level camera from SVBONY. It’s compatible with most cameras and even works with additional light transmission filters. The camera is best for telescopes with focal lengths between 400 and 800 millimeters.
It does a fantastic job of recording nearby celestial targets, such as planets and the moon’s surface. The unit is sporting a great dark light compensation feature. Even if your target isn’t producing a ton of light, the sensor will adapt to produce a clear image.
Key Features:
- Durable metal shell
- Can record up to 2K resolution video
- Compatible with most light filters
- Dark light compensation
- Full-color filters
AVAILABLE ON AMAZON
SVBONY SV305 CMOS Telescope Camera

Here’s another worthy camera from SVBONY. This unit is a bit more advanced than the last one. The sensor inside is very sensitive. It’s a back-illuminated CMOS sensor. Even in subpar conditions, the sensor does a great job of picking up less noise and distortion.
Another feature we like is the built-in DDR RAM. 128 MB of RAM caches images as the data travels to the computer. This ensures that issues with your computer don’t distort or corrupt the images you capture.
Key Features:
- Low-noise sensor
- Multiple shooting options
- DDR RAM buffer
- Fits standard focusers
- Simple setup
AVAILABLE ON AMAZON
BRESSER Full HD Deep-Sky Camera

The camera from BRESSER is another dream product that can help you capture the beauty of outer space without the use of heavy cameras. It’s a lightweight little camera that’s no bigger than a standard eyepiece. However, it’s packing some impressive technology inside.
A 2.1-megapixel color sensor from Sony is the brains of the device. It picks up fine details to make your shots truly stand out. The camera can even record high-definition video, opening up a world of artistic possibilities.
Like the previous camera, this device can double as an autoguider. The included USB cable connects to a PC and your preferred astronomy software.
Key Features:
- Astrophotography and guider camera
- Sony IMX290 sensor
- Records at full HD resolution
- 2.1-megapixel stills
- Autoguider functionality
- Lightweight build
AVAILABLE ON AMAZON
Celestron NexImage 5 Solar System Imager

Looking to capture true-to-life images without a ton of experience? This Celestron camera is for you. There are a few different features that simplify the astrophotography experience. The first is the DigitalClarity technology. Built into the sensor, it dramatically reduces noise before the image even makes its way to the computer.
The included software is great, too. It automatically analyzes each frame and removes images that are distorted from poor atmospheric seeing. This results in an ultra-clear video.
Key Features:
- 5 megapixels
- Innovative software
- Fits most telescopes and focusers
- Made of machined aluminum
- Micron DigitalClarity technology
AVAILABLE ON AMAZON
Orion Starshoot 3mp Solar System V Imaging Camera

The Starshoot camera from Orion is a simple little device with a great sensor. The 3-megapixel sensor has large pixels to improve clarity and reduce distortion. It’s a full-color sensor, too, so you can pick up true-to-life images without any problems.
When you take an image, the camera stacks multiple exposures on top of one another automatically. This helps to the highest quality image possible. You’ll be able to see finer details within a single image.
Key Features:
- 3.2-micron pixels
- 3 megapixels
- Exposure stacking
- Color camera
- Works with most focusers
AVAILABLE ON AMAZON
Astromania SGCMOS Series Telescope CMOS Camera

Great for astrophotography beginners, this camera simplifies the image capturing process. Usually, planetary imaging requires near-perfect conditions to do successfully. However, the low-noise sensor and some additional software technologies help to create a stunning image even in less-than-ideal environments.
There’s a dark field correction system that automatically removes distortion. It addresses atmospheric issues as well as improves image capture in low-light conditions. If you want to see the true image you captured, the software is capable of providing raw data for custom manipulation, too.
Key Features:
- 1.2 megapixels
- Low-noise sensor
- Aluminum barrel
- Dark field correction
AVAILABLE ON AMAZON
Orion Star Shoot G4 Color Deep Space Imaging Camera

This camera from Orion looks small and simple. But, it’s one of the most powerful planetary cameras in the game. This device is sporting a robust CCD sensor that’s capable of 16-bit imaging. It captures far more data samples than other cameras, ensuring that your image is clear.
Not only that, but the individual pixels are about 8.3 microns in size. While still invisible to the naked eye, those pixels are more than twice the size of standard cameras. This improves the unit’s light-gathering capabilities for better deep-space performance.
Key Features:
- CCD sensor
- 8.3-micron pixels
- 16-bit imaging
- Built-in thermoelectric cooling
AVAILABLE ON AMAZON
ZWO ASI290MM MINI 2.1 MP CMOS

Weighing a hair over three ounces, this camera from ZWO is perfect for taking images on the go. You can slip it in a bag or pocket as you travel to a stargazing spot with low light pollution.
In terms of performance, this camera doesn’t disappoint. It has 2.1 megapixels and precise guiding. The sensor is smart enough to detect small deviations in positioning during an exposure. It will make up for those deviations to create a low-distortion image.
Key Features:
- 2.1 megapixels
- Lightweight
- Precise guiding
- USB3 and St-4 port
- Fits standard 1.25-inch focuser
AVAILABLE ON AMAZON
ZWO ASI120MM MINI 1.2 MP CMOS

Another great ZWO option, this camera performs well for deep-space objects. The pixels are slightly larger at 3.75 microns. On a 1.2 megapixel sensor, the larger pixel size does sacrifice resolution. But, the camera makes up for that by reducing noise.
The protective lens is coated for better light transmission. The camera is built to allow as much light as possible to flood the sensor. It’s a great option for auto-guided telescopes and long-exposure shots.
Key Features:
- 3.75-micron pixels
- Low-noise sensor
- Improved light transmission
- Good for auto-guiding
AVAILABLE ON AMAZON
SVBONY SV305 Pro Telescope Camera

Take your astrophotography skills to another level! Instead of using clunky DSLRs or smartphones, you can use this pocket-sized telescope camera. It fits directly onto the finderscope or eyepiece.
The camera does double-duty as an astrophotography accessory and a stargazing accessory. You can utilize it to take breathtaking photos. The CMOS sensor is robust. Plus, you have variable exposure times up to 30 minutes!
Alternatively, you can connect it to your computer and the finderscope. In this setup, it acts as a guider. With the right software, it’ll map the stars and help you point to celestial bodies in only a few minutes.
Key Features:
- Guider and astrophotography camera
- Variable exposure time
- Illuminated CMOS sensor
- Wide computer compatibility
- Lightweight construction
- Heat management system
AVAILABLE ON AMAZON
Planetary Imaging Cameras Buying Guide
The world of photography is already complicated enough. When you add planets and deep space celestial objects into the mix, the hobby gets even harder. There are a lot of factors to consider when choosing your camera.
CCD vs CMOS Cameras
The first thing you need to decide is whether you want a CCD camera or a CMOS camera. Both of these options are completely digital. They often look the same and offer the same user experience. So, what makes them different? It all comes down to how the camera captures your image.
CCD Cameras
CCD stands for Charge-Coupled Device. The CCD is the sensor that’s responsible for converting the light into a digital image you can view and share.
Chances are, you’ll never get a chance to see the CCD yourself! It’s deep within the camera and acts similarly to film. Whenever you open the shutter to capture an image, tiny pixels pick up photons and convert them to electrons. Essentially, the sensor converts analog light energy into an electronic signal for image recreation.
The CCD sensor has been around for a long time. In fact, some of the very first digital cameras were CCD cameras. However, these units aren’t as widespread as CMOS cameras. The reason for this is the price and manufacturing process.
CCD sensors are far more complex. They require a unique manufacturing process because each pixel funnels information to the next before collecting at the corner of the sensor. Think of it as a series of interconnected funnels. When a photon enters the sensor, it moves throughout the entire chip before it exits from the corner for processing.
This makes the chip more compact and easy to implement. But, it’s a challenge to manufacture. Not only that, but this process uses up a lot of power. Thus, CCD cameras tend to be more expensive to implement.
CMOS Cameras
CMOS, or Complementary Metal-Oxide Semiconductor, cameras are very prevalent. There’s a good chance that the camera on your smartphone or laptop uses a CMOS sensor! These sensors are far more economical to make. The manufacturing process is similar to making microprocessors, so camera brands are able to produce the technology en masse.
A CMOS imager looks similar to a CCD one. But, it operates a bit differently. It also has tiny pixels to pick up light. But rather than sending the signal to nearby pixels until everything accumulates at the corner, information is processed instantly. Each pixel has several transistors located next to it.
This process is a bit more efficient in terms of power consumption. However, light can interact with those transistors, resulting in a lower-quality image.
Which is Best for Planetary Imaging?
For an imaging camera that’s built for planets and other celestial objects, CCD sensors tend to be the better choice. The design of the sensor and pixels is more efficient. The sensors can capture light better, resulting in a high-quality image with less noise.
Even for video, CCD cameras tend to out-perform CMOS cameras. CCD units offer greater frame rates. Plus, they have a global shutter system to instantly capture an entire image at once. CMOS cameras have a rolling shutter than can manipulate light incorrectly, resulting in a distorted image and grainy video.
CMOS cameras have gotten a lot better in recent years. Some premium models even rival that of CCD cameras. We fully expect CMOS cameras to be on par with CCD units in the future. But for now, CCD cameras take the cake.
That doesn’t mean that a CMOS camera is incapable of giving you a good image. In fact, CMOS technology is far more common than CCD. It’s more accessible and cost-efficient to use CMOS cameras. You’ll just have to work a bit harder to get your image to come out just right.
Key Features and Specs to Look For In The Best Planetary Cameras
Now that you have a better understanding of the types of cameras available, let’s look at some important specifications you need to look into when buying the best planetary cameras.
Color Capabilities
You’re going to encounter two types of planetary cameras: mono cameras and color cameras. Monochrome cameras are only capable of producing black and white images. The sensors do not have color filters on them, so they are physically incapable of creating colorful images. To capture color images, you would need an additional filter wheel.
One shot color cameras have those filters built right in. Typically, the filters are placed on top of each filter. This ensures that light is appropriately measured to produce realistic color.
You may even find near-infrared cameras. These cameras pick up light that’s not visible to the naked eye, which provides greater detail and clarity.
Pixel Size
Most photographers pay attention to the number of pixels a camera has. But, the individual pixel sizes are important, too. Measured in Microns, the size of the pixel will determine the amount of usable data that’s collected. Larger pixels pick up more “good” data. Meanwhile, small pixels will pick up more noise.
Sensor Size
The size of the sensor is going to affect what you’re going to be able to capture. A small or standard-sized senors is great for nearby planets. You can pick up images of Saturn, Jupiter, or Mars without any issues. Small sensors offer a narrow field of view, which is fine for objects within our solar system.
But if you want to try your hand at deep-sky imaging, you’ll need a large sensor. Larger sensors offer a wide field of view, which is perfect for nebulae and far-off galaxies.
Capture Modes
Finally, think about the types of images you want to capture. Most planetary imaging cameras are built for capturing high-resolution photos. But, you can also find those with video modes.
Recording video of planets is tricky. So, pay attention to the FPS rating. To get a distortion-free video, you need a high frame rate.
What You Need to Use The Best Planetary Cameras
Planetary imaging cameras are not standalone devices. They rely on additional equipment to operate efficiently. More specifically, you need a high-quality telescope!
The telescope is going to do most of the grunt work when it comes to magnification and focusing. The camera will help to capture the light and recreate the image. But, the telescope will manipulate the light to help it reach the camera’s sensor.
There’s no shortage of good cameras to choose from. We recommend using a good refractor telescope with a wide aperture and decent focal length. A wider aperture is going to allow light to flood into the telescope. Meanwhile, the longer focal length will provide higher magnification.
Choose a telescope that matches your astrophotography needs. If you’re planning on capturing deep-space objects, you’ll need an ultra-powerful telescope that can bring in as much light as possible. But, simpler entry-level telescopes work fine for nearby planets and lunar photography. You can read more about these in our telescopes for deep space objects, and telescopes for viewing planets guides.
Conclusion
The best planetary cameras can make all the difference when you’re trying to capture the planets in all of their glory. The devices we went over have what it takes to pick up surreal photos with impressive image quality fit for an art exhibit. Give one a shot and see what kinds of images you can capture!